796.5=35.5y+.875y^2

Simple and best practice solution for 796.5=35.5y+.875y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 796.5=35.5y+.875y^2 equation:


Simplifying
796.5 = 35.5y + 0.875y2

Solving
796.5 = 35.5y + 0.875y2

Solving for variable 'y'.

Reorder the terms:
796.5 + -35.5y + -0.875y2 = 35.5y + -35.5y + 0.875y2 + -0.875y2

Combine like terms: 35.5y + -35.5y = 0.0
796.5 + -35.5y + -0.875y2 = 0.0 + 0.875y2 + -0.875y2
796.5 + -35.5y + -0.875y2 = 0.875y2 + -0.875y2

Combine like terms: 0.875y2 + -0.875y2 = 0.000
796.5 + -35.5y + -0.875y2 = 0.000

Begin completing the square.  Divide all terms by
-0.875 the coefficient of the squared term: 

Divide each side by '-0.875'.
-910.2857143 + 40.57142857y + y2 = 0

Move the constant term to the right:

Add '910.2857143' to each side of the equation.
-910.2857143 + 40.57142857y + 910.2857143 + y2 = 0 + 910.2857143

Reorder the terms:
-910.2857143 + 910.2857143 + 40.57142857y + y2 = 0 + 910.2857143

Combine like terms: -910.2857143 + 910.2857143 = 0.0000000
0.0000000 + 40.57142857y + y2 = 0 + 910.2857143
40.57142857y + y2 = 0 + 910.2857143

Combine like terms: 0 + 910.2857143 = 910.2857143
40.57142857y + y2 = 910.2857143

The y term is 40.57142857y.  Take half its coefficient (20.28571429).
Square it (411.5102043) and add it to both sides.

Add '411.5102043' to each side of the equation.
40.57142857y + 411.5102043 + y2 = 910.2857143 + 411.5102043

Reorder the terms:
411.5102043 + 40.57142857y + y2 = 910.2857143 + 411.5102043

Combine like terms: 910.2857143 + 411.5102043 = 1321.7959186
411.5102043 + 40.57142857y + y2 = 1321.7959186

Factor a perfect square on the left side:
(y + 20.28571429)(y + 20.28571429) = 1321.7959186

Calculate the square root of the right side: 36.356511365

Break this problem into two subproblems by setting 
(y + 20.28571429) equal to 36.356511365 and -36.356511365.

Subproblem 1

y + 20.28571429 = 36.356511365 Simplifying y + 20.28571429 = 36.356511365 Reorder the terms: 20.28571429 + y = 36.356511365 Solving 20.28571429 + y = 36.356511365 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-20.28571429' to each side of the equation. 20.28571429 + -20.28571429 + y = 36.356511365 + -20.28571429 Combine like terms: 20.28571429 + -20.28571429 = 0.00000000 0.00000000 + y = 36.356511365 + -20.28571429 y = 36.356511365 + -20.28571429 Combine like terms: 36.356511365 + -20.28571429 = 16.070797075 y = 16.070797075 Simplifying y = 16.070797075

Subproblem 2

y + 20.28571429 = -36.356511365 Simplifying y + 20.28571429 = -36.356511365 Reorder the terms: 20.28571429 + y = -36.356511365 Solving 20.28571429 + y = -36.356511365 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-20.28571429' to each side of the equation. 20.28571429 + -20.28571429 + y = -36.356511365 + -20.28571429 Combine like terms: 20.28571429 + -20.28571429 = 0.00000000 0.00000000 + y = -36.356511365 + -20.28571429 y = -36.356511365 + -20.28571429 Combine like terms: -36.356511365 + -20.28571429 = -56.642225655 y = -56.642225655 Simplifying y = -56.642225655

Solution

The solution to the problem is based on the solutions from the subproblems. y = {16.070797075, -56.642225655}

See similar equations:

| 5a+4-20=10 | | -4-2x+x=-4.8 | | 3(9a+3b)= | | (x-8)(x+15)=0 | | -810=90 | | y^2-6y+8x+9=0 | | 7(-9)+5=3(-9)-31 | | -10+24+24n=-6n+24 | | (2x+9)(4x-9)=0 | | sqrt(y+6)-4=2 | | log(2x-8)=2 | | Y=1/2×-2-4 | | 3x+7x=8x | | q^2+499849=850*850 | | -4x+7-5x=2 | | 400xn=334 | | 2x-(x-4)=17 | | 6x^2-336=6x | | -24y+932=1336 | | 7a+5x-4a+4x= | | 4x-9y-6=x | | 1/2×-2-4 | | 3(5x+3)-5x=2(5x-4) | | 750+n=24000 | | 7x+4-15x=15 | | 5(3x+1)+x= | | 10y-4=4y-7 | | (3x-15)/-6=(2x-2)/-6 | | -3x=x-6+2x | | 4w-w*26=19 | | -4-5(1+6z)=19 | | 3x-15/-6=2x-2/-6 |

Equations solver categories